1. Use the formula for the sum of a geometric series to find a power series representation for $f(x)=\frac{5}{1-2 x}$.
2. Our goal is to find a power series representation for $f(x)=\frac{1+x}{1-x}$.
(a) Find the power series for $g(x)=\frac{1}{1-x}$ and its radius of convergence.
(b) Use part (a) to find a power series representation for $h(x)=\frac{x}{1-x}$.
(c) We want to add the two series together to get a series representation of $f(x)$. This will be easier if both series have terms with the same power of x. Use an index shift to rewrite the series for $h(x)$ so that its terms include x^{n}.
(d) Now we want to add the two series together. Try writing each series in expanded form and then writing a new series expression for the sum.
(e) What is the radius of convergence of the final series for $\frac{1+x}{1-x}$?
3. Now let's find a power series representation for $f(x)=\frac{2 x}{(1-x)^{2}}$.
(a) Find a power series representation for $g(x)=\frac{1}{(1-x)^{2}}$.

Hint: Use the power series for $\frac{1}{1-x}$.
(b) Use (a) to find a power series representation for $h(x)=\frac{2 x}{1-x}$.
4. Let $f(x)=\frac{1}{1+x^{2}}$.
(a) Find a power series representation for $f(x)$, including the radius of convergence.
(b) Integrate to find a power series representation for $g(x)=\arctan (x)$. Use the initial condition $g(0)=0$ to solve for the value of the constant.
5. Find a power series representation for $g(x)=\frac{x}{9+x^{2}}$.

Hint: Find a representation for $\frac{1}{1+\left(x^{2} / 9\right)}$ first.
6. Use the antiderivative of $f(x)=\frac{1}{(x+3)^{2}}$ to find a power series representation of $f(x)$.
7. Use the previous problem to find a power series representation of $g(x)=\frac{x^{3}}{(x+3)^{2}}$.

